THE INFLUENCE OF THE HALL EFFECT ON THE CURRENT
STRUCTURE IN A PLASMA FLOW WITH A SPATIALLY
PERIODIC MAGNETIC FIELD
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The structure of the electric fields and current is studied for stationary plasma flow in an
axially symmetric, spatially periodic magnetic field. The problem is solved in the magne-
tohydrodynamic approximation with allowance for the Hall term in the generalized Ohm's
law equation. It is assumed that the magnetic Reynolds number and the interaction parame-
ter are small,

A number of problems in the dynamics of plasmoids passing through an axially symmetric magnetic
field have been satisfactorily explained by means of a generalized flexible current loop model [1, 2]. How-
ever, this model does not include the Hall effect and the influence of this can be considerable [3, 4]. The
solution of the full system of equations in the magnetohydrodynamic approximation is a complex problem,
Nevertheless, it is possible to construct a solution for the electric fields and current alone if their effect
on the magnetic field and the change in the flow parameters are neglected. Such an approach is possible
for sufficiently small values of the magnetic Reynolds number (which is a measure of the deformation of
the magnetic field by the flow) and the interaction parameter (Stuart number) [5].

From the zeroth approximation in these parameters we can find the solution for the current and fields
by studying only one equation of the system — the generalized Ohm's law, This method has earlier been
used for investigating the influence of the Hall effect for various particular cases of plasma interaction with
axially symmetric magnetic fields [6-9]. In [9], for example, the motion of a plasma was studied for a sign-
varying, spatially periodic magnetic field. In this paper the study is generalized to the case of a uniform
magnetic field which is modulated by a varying, spatially periodic field and an analysis is made of the struc-
ture of the vector lines of current density in the plasma as a function of the modulation depth,

If the gaskinetic pressure is neglected, together with the drift of the ions relative to the neutrals,
the generalized Chm's law takes the form

j=o(E+[v, B])—k[j, B 45
where
_ s PR i . Ex v* _ B*
6_607’ 1= So*vo*Bo* ’ T vg*Bo*’ v= vo*’ B——B-o’i

Here k=wgTgj is the Hall parameter, § is the current density vector, ¢ is the conductivity, E is the
electric field, v is the plasma velocity, B is the magnetic induction vector, wg is the electron gyrofre-
quency, Tg; is the time between electron-ion collisions; the star denotes dimensional quantities and the
subscript 0 denotes quantities for an undisturbed plasma, The magnetic field is characterized by the pa-
rameter By* which is the amplitude value of the modulating field on the axis of symmetry, Since we are
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taking all parameters describing the stream (apart from the electric fields and currents) as being un-
disturbed, the flow velocity v is a constant:

V==e, (r<b

where ey is the unit vector along the axis of symmetry (the z axis) and b is the radious of the infinite plas-
ma cylinder; the conductivity ¢ is equal to unity inside the cylinder and zero outside.

We consider the zeroth approximation in the small magnetic Reynolds number and, therefore, the
external magnetic field can be considered as undeformed. It is assumed that the spatially periodic mag-
netic field B(By, O, By) is given by

B, =1,(r)eosz, B,= —I,(r)sinz— B, @)
where I;(r) and I;(r) are modified Bessel functions, r=r*/L*, z=2z*/L* L*=2A/2m, and A is the period of

the magnetic field,

Thus to this approximation the unknown quantities in (1) are the electric field E and the current den-
sity j. We try for the solution in the form of a power series in the Hall parameter k (k < 1):

o

i=2 Ky, @)

n=0

and similarly for the field E; the expansion coefficients j,, and E, will be called the currents and fields of
order n, Successive consideration of the chain of algebraic equations for j, and E, shows [6] that prin-
cipally a zero-order current j, is induced by the external magnetic field in the absence of a Hall effect and
has only an azimuthal component whereas the current j; has an azimuthal component, In other words, in
the first approximation the Hall current does not represent a correction to the main current but is separate
from it on account of the symmetry of the problem, Further approximations give higher-order corrections
in k to the main current j, (k%, etc.) and to the Hall current kj; (%3 etc.) We limit ourselves to the first-
order field and current.

The equation relating j; and E; has the form
ji=cE =—F, 4)
where

Fo=[jo Bl =—gq|lv, B], B] ®)
We transform (4) to an equation for the electric field potential &, defined by
E,=— V@ 6)

To do this, we find the divergence of both sides of (4). Since ¢ =1 inside the plasma, we get

A®, = — div Fy ()

The normal component of the current is equal to zero on the free surface of the plasma and thus the
potential &, must satisfy the boundary condition

oD

T ey = — Forlms ®)
Since the plasma moves in a spatially periodic magnetic field, the currents can be expected to be

periodic functions of z. Hence the derivatives of the potential will satisfy the periodic conditions

00:(r, 5) _ 0Di(r,z+2m) DL (r, 2) _ 0D (r, 2+ 20)

or — ar ’ 9z 37 . %)
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In order to solve (7) we introduce a new unknown @ such that in-
stead of the boundary condition (8) we have the following homogeneous

condition:
2
- | (10)
r r=b
where
g % T
! D= 11
i %+yMr 1)
s
g, With this substitution, Eq. (7) takes the form
f
W

T

2
AD = — 2 SFO,dr (12)
[13

[4

The solution of this equation satisfying (10) can conveniently be
found as a Dini expansion in zero-order Bessel functions, After finding
® (r, z) and transferring to the potential ®,(r, z), we finally arrive with
the help of (11) at the result

Dy (r, 2) = 2Cb72(z — zg) -+ A4 (r)sin 2z -+ Ay (r)cos z (13)

where C and z, are constants,

2 kY Jo (kir /B 1
M) =5 [T ot )+ ﬁ%ﬁv%%ﬂ+ﬂmm—n

2 ) k) Jo(kir /b
Aa(r) = o [ pa* G0 + 5, LB DD ] 1 Byl ) — 1]

1.2 (ki) are the Dini coefficients of the functions Py,(T):
=120 =13 @) +1, p ()= — B, I, (1) — 1]

Since the potential is in general defined to within an additive constant, the value of z, remains un-
determined. We thus obtain a family of solutions depending on the constant C for the potential &,(r, z).
An additional condition must be imposed on the potential if C is to be determined,

The electric field produced by the potential &, (r, z) and the components of the first-order current
can be found by means of (6) and (4).

We consider the case when the radius of the plasma stream is small compared to the characteristic
length L* (b « 1, thin stream), We expand the modified Bessel functions Iy(r) and I;(r) info a power series
in the small radius r <b and limit ourselves to the first two ferms; we thus obtain the following equations
for the components of the vector current density:

jir = Yag B2 14— (r/ B)?] (sin 2z -+ B; cos 7)
. b 2C b? 2 . :
Jiz= (-1-6—-5;)—§ [1—2(%) ] (sinz 4- By) sinz (14)

We many notfe that only the second of these equations contains the undetermined constant C. In order
to see the physical significance of this constant, we introduce the total current I;; along the axis of sym-
metry:

b
I, =2n S jirar
o

612



7 and C can be expressed linearly in terms of this current as

Wi K ’ W]

/ ,Ly)\] gfj C=—1./2n + b%32 (15)

The expressions for the current density components are thus
reduced to the form

7 « F: 4

Fig. 2
jir = herb® [1 — (r / b)?} (sin 2z 4 By cos z)
I 2
j12 :%-—% [1 ——2(%)2] (sinz 4 By)sinz (16)
Instead of applying an additional condition on the potential for determining C, we can impose a con-
dition on the current I;,. We might, for example, assume that there is zero total axial current or I;,=0,

However, since we are not taking into account effects connected with the input and output of the plasma,
we can leave open the question of the actual condition imposed.

The differential equation defining the vector lines of current density (16) in the plane ¢ =const has
the following form:

dr r[t—(r/b? (2sinz 4 Bi)cosz (M_811z>

TG 2M &R/ —1) (sinz + Bising] T (17

In place of I;;, we can now talk of possible values for M. It seems best to consider two cases sepa-
rately: M=0 and M =0,

Suppose M=0. Physically this means that there is no total axial current flowing through any arbi-
trary cross section z=const. The current density lines must therefore close inside the given volume, In
fact, a study of the singular points of the vector lines corresponding to (17) shows that in each period the
lines form a familiy of closed loops and the number and positions of these depend on the depth of modula-
tion of the magnetic field h= B */B,;* =1/B;. The schematic form of the current loops in the plane ¢=const
with I;,=0 is given in Fig. 1,

It is interesting to follow the change in the structure of the vector field as the modulation depth in-
creases, Ifhis small (0<h< 1/2), there are two families of closedloops in one period and the centers of
these lie on the line r=b/v2 at the points z=7/2 and z=37/2 (Fig. 1la). The directions of the currents are
opposite in neighboring families of loops and the boundaries separating the families are represented by
the lines z=0, z=7 and z= 2w, With further increase in h, the shape in the first half-period (0, 7} remains
the same and all the changes take place in the second half-period (m, 2m). We may note that for all values
of h the centers of the families remain on the line r=b/v2, When h passes through the value of !/, the
point r=b/v2, z=37/2 becomes a saddle point and the family in the second half-period splits into twoparts
divided by the line z=3%/2, The centers of these families (Fig. 1b) lie at the points

z = 1 -} arc sin 1/2h, % = 27— arc sin 1/2h.

" This vector field structure is maintained for 1/2 <h<1, When h passes through the value 1, the point
r=b/V2, z=37/2 again becomes a center with three families now in the half-period; the third family comes
in between the previous two and is separated from them by the lines (Fig. 1c)

z = 7t + aresinh~t, z=2nx—arcsinh™1.

This third family remains as the only one in the half-period (m, 2m) as h — « and the other two dis~
appear (Fig, 1d). It now becomes meaningless to talk of the modulation of a uniform field because this
case corresponds to the value B;=0 and there is no uniform field since it changes sign. The spatial period
of the current density vector is half that of the magnetic field and is equal to . This first-order Hall cur-
rent field has been derived earlier [9] for a plasma with a spatially periodic magnetic field which changes
sign,

Suppose M = 0. If there is a longitudinal current, then the current density vector field is more com-
plicated. For small values of I, there are still families of closed loops but the centers are shifted from
the positions with I, =0 and the loops are deformed. In addition to the loops, there are vector lines which
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do not close inside a period. At some value of I,;, determined by the modulation depth h, the families
of closed loops disappear.

Magnetic fields with small modulation depths (corrugated fields) are of the most interest, We there-
fore consider in more detail the case where h lies in the interval (0, 1/2). The singular points of the vector
j occur where the components j;r and j;, are both simultaneously equal to zero. For the interval considered
the component jr is equal to zero at z= 7/2 and z=37/2, and the component j1z, is zero on the line whose
equation is -

M4&2@F/b)*—1lsinz(sinz -+ B) =0 (18)

If the value of M admits the existence of a singular point, the nature of this point is the same as that
which occurs for M=0.

Figure 2 shows schematically the positions of the vector lines for Iz =0, M= 0 and a modulation
depth h< %,. The dashed lines depict the lines (18) where j;,=0. It can be seen that there are two families
of closed loops in a period and that the centers of these are shifted with respect to the case M=0 (see Fig.
1a). The shift increases as the value of the longitudinal current I,, goes up. Investigation shows that this
closed-loop structure is maintained up to a value M= (1—h)/h, where the family in the second half-period
disappears, When M= (1+h)/h, the family in the first half-period also disappears and all the vector lines
remain unclosed, '

The author thanks N.A.Khizhnyak and A, A. Kalmykov for useful discussions.
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